19 research outputs found

    Performance Boundary Identification for the Evaluation of Automated Vehicles using Gaussian Process Classification

    Get PDF
    Safety is an essential aspect in the facilitation of automated vehicle deployment. Current testing practices are not enough, and going beyond them leads to infeasible testing requirements, such as needing to drive billions of kilometres on public roads. Automated vehicles are exposed to an indefinite number of scenarios. Handling of the most challenging scenarios should be tested, which leads to the question of how such corner cases can be determined. We propose an approach to identify the performance boundary, where these corner cases are located, using Gaussian Process Classification. We also demonstrate the classification on an exemplary traffic jam approach scenario, showing that it is feasible and would lead to more efficient testing practices.Comment: 6 pages, 5 figures, accepted at 2019 IEEE Intelligent Transportation Systems Conference - ITSC 2019, Auckland, New Zealand, October 201

    Enabling security checking of automotive ECUs with formal CSP models

    Get PDF

    A Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example

    Get PDF

    AI-based intrusion detection systems for in-vehicle networks: a survey.

    Get PDF
    The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still lacks the implementation of suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs) have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intelligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article surveys AI-based in-vehicle IDS from 2016 to 2022 (August) with a novel taxonomy. It reviews the detection techniques, attack types, features, and benchmark datasets. Furthermore, the article discusses the security of AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing proposals, and gives recommendations for future research directions

    Context-aware anomaly detector for monitoring cyber attacks on automotive CAN bus.

    Get PDF
    Automotive electronics is rapidly expanding. An average vehicle contains million lines of software codes, running on 100 of electronic control units (ECUs), in supporting number of safety, driver assistance and infotainment functions. These ECUs are networked using a Controller Area Network (CAN). Security of the CAN bus has not historically been a major concern, however, recent research demonstrate that CAN has many vulnerabilities to cyber attacks. This paper presents a contextualised anomaly detector for monitoring cyber attacks on the CAN bus. Proposed algorithm is based on message sequence modelling, using so called N-grams distributions. It utilises only benign data (one class) for training and threshold estimation. Performance of the algorithm was tested against two different attack scenarios, RPM and gear gauge messages spoofing, using data captured from a real vehicle. Experimental outcomes demonstrate that proposed algorithm is capable of detecting both attacks with 100% accuracy, using far smaller time windows (100ms) which is essential for a practically deployable automotive cyber security solution

    Scenario Optimisation and Sensitivity Analysis for Safe Automated Driving Using Gaussian Processes

    Get PDF
    Assuring the safety of automated vehicles is essential for their timely introduction and acceptance by policymakers and the public. To assess their safe design and robust decision making in response to all possible scenarios, new methods that use a scenario-based testing approach are needed, as testing on public roads in normal traffic would require driving millions of kilometres. We make use of the scenario-based testing approach and propose a method to model simulated scenarios using Gaussian Process based models to predict untested scenario outcomes. This enables us to efficiently determine the performance boundary, where the safe and unsafe scenarios can be evidently distinguished from each other. We present an iterative method that optimises the parameter space of a logical scenario towards the most critical scenarios on this performance boundary. Additionally, we conduct a novel probabilistic sensitivity analysis by efficiently computing several variance-based sensitivity indices using the Gaussian Process models and evaluate the relative importance of the scenario input parameters on the scenario outcome. We critically evaluate and investigate the usefulness of the proposed Gaussian Process based approach as a very efficient surrogate model, which can model the logical scenarios effectively in the presence of uncertainty. The proposed approach is applied on an exemplary logical scenario and shows viability in finding concrete critical scenarios. The reported results, derived from the proposed approach, could pave the way to more efficient testing of automated vehicles and instruct further physical tests on the determined critical scenarios
    corecore